

IMPROVING PATIENT LIVES

by consistently delivering high-quality biopharmaceutical products

Dave Briggs, Ph.D. Sr. Manager, Manufacturing Quality Sciences

William Leonardi, Ph.D.

Project Manager

Interphex 2019 Wednesday, April 3, 2019

ERVIC

ES

Presentation Objective To share Avid's experiences in planning, executing, and completing process validation campaigns

William Leonardi

Will be presenting the planning cycle of Process Validation Campaign

Avid Bioservices Overview

 Avid Capabilities and Track Record Supporting Multiple Process Validation Campaigns

Process Validation Planning

Project Management Involvement in Process
 Validation Life Cycles

David Briggs

Will be presenting the execution cycle of Process Validation Campaign

Process Validation Execution

 Avid Approach in Executing Process Validation Campaign

Summary

 Key factors to ensure the execution of Process Validation

CDMOs are an Important Partner to the Biopharmaceutical Industries

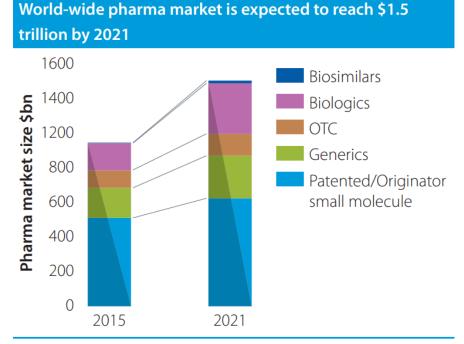


Figure 1 Global pharmaceutical market 2015-2021

- Biologics and Biosimilar show a faster paced growth than among other sectors (22.2% market share in 2021 vs 16.6% in 2015)
- 220 New Drugs are expected to be introduced in 2021 (biologics products lead the growth) – Demand for biologics manufacturing will increase
- The introduction of new biologic products to the market will require biopharma companies to build inventory prior to launch – Partnering with CDMO to secure the supply
- Externalizing manufacturing of biologic products to CDMO is highly desirable to reduce time to market and operational expense - pharma and biotech companies can focus on its core capabilities and strengths

A CDMO helps to advance products from development to manufacturing and eventually the commercialization stage

Source:

• Review of Outsourced Manufacturing. Results Healthcare Report. 2017

Outlook of Global Medicines through 2021. QuintilesIMS

Avid Bioservices Overview

Established Track Record as a Clinical & Commercial Biologics CDMO

26 • Years of experience developing in-house product & technology

- **26** Years of biologics manufacturing experience
- Years of successful inspection history

Years of cGMP commercial manufacturing

+ Years of with single-use technology, multiple platforms

- Successful process validation campaigns
- Successful pre-approval inspections

Department of Health

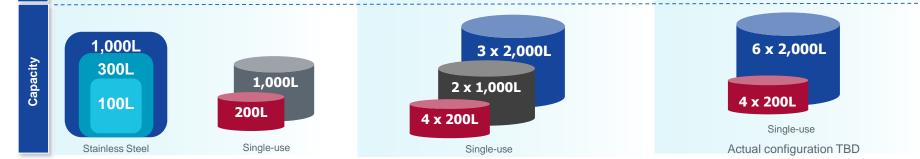
State of The Art cGMP Manufacturing Facilities

Fully disposable manufacturing process

Future Expansion

Facility Overview

Franklin Facility


- 12,000 ft² facility
- cGMP manufacturing since 1993
- Inspected by multiple regulatory agencies

Myford 1 Facility

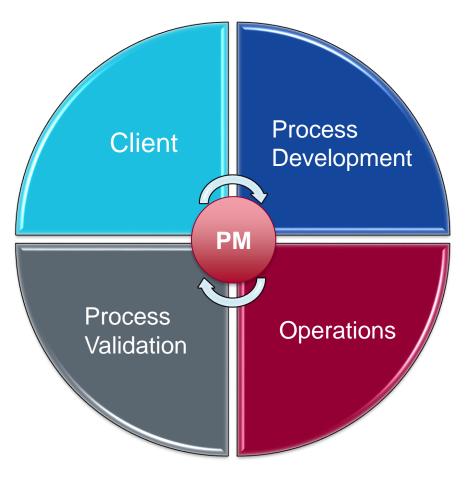
- 42,000 ft² facility
- Commissioned in 2016
- Integrated QC labs for in-process samples, final release, & environmental monitoring

Myford 2 Expansion

- 42,000 ft² open space
- Facility Design with twice the capacity as Myford 1

Process Validation Campaign Planning

Process Validation Controlled process to assure consistent drug quality


According to the FDA's 2011 Process Validation (PV) guidance, "For purposes of this guidance, process validation is defined as the collection and evaluation of data, from the process design stage through commercial production, which establishes scientific evidence that a process is capable of consistently delivering quality product. Process validation involves a series of activities taking place over the lifecycle of the product and process."

Project Management Hands On Involvement Throughout Process Validation Life Cycle

Avid Project Manager (PM) works focused on managing the overall life cycle of Process Validation by 1) Planning and Coordinating multiple activities and 2) Providing real time information's and Outstanding customer services to multiple stake holders

Process Validation Planning Life Cycle

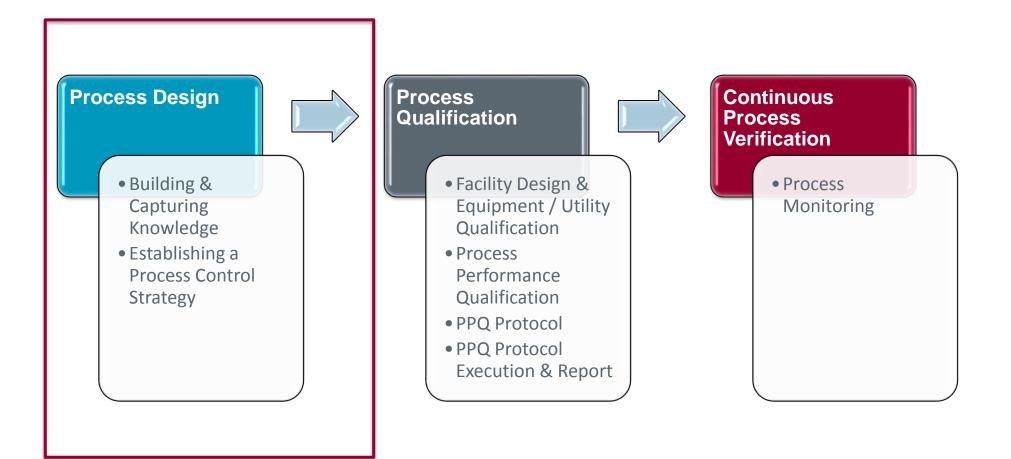
	Initiation	Planning	Monitoring and Control	Closure
1.	Estimate BLA submission time	 Timeline generation. Identify and confirm 	1. Periodical meeting (internal and external)	1. Complete and formally close related projects
2.	Determine study requirements	responsible lead	2. Identify corrective actions	 Communicate project closure to stakeholders
3.	Determine process validation strategy	 Finalized Project Charter Stakeholder approval 	 Any additional project/studies needed 	
			4. Change Order to update timeline	

Tailored Approach to Plan and Manage Overall Process Validation Life Cycle

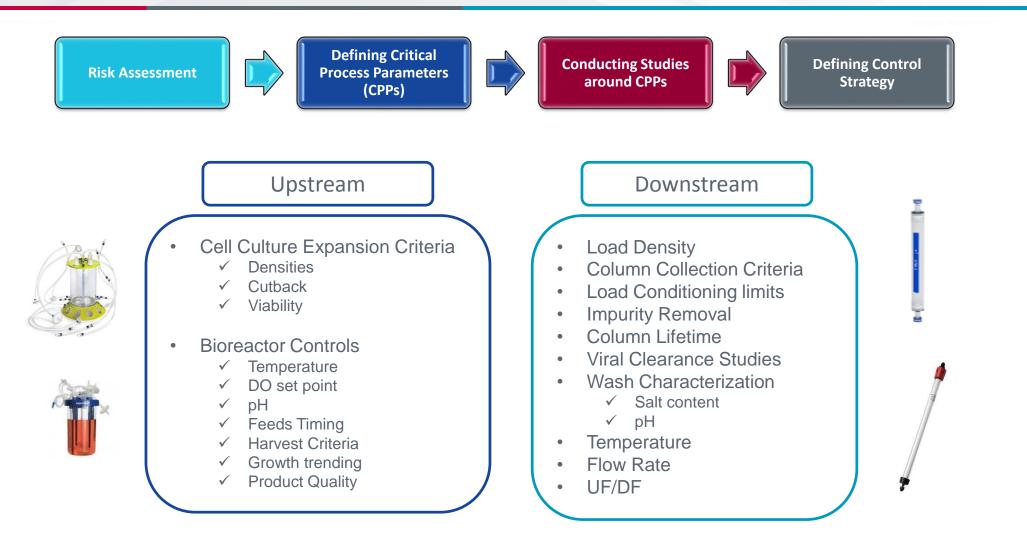
- Avid Project Manager (PM) works closely with external and internal clients to ensure the Process Validation strategies are aligned with the client regulatory submission strategies
- Work breakdown structures will be managed by a dedicated Avid PM

						Year 1												Year 2												
Phase Work Scope													14	14 15 16 17 18 19 20 21 22 23 24									25	26	27					
	Pre - Process Characterization																													
	Small Scale Media, Feed, and Buffer Formulation																													
	Seed Train Robustness/Cutback Study																													
	Upstream Scale Down Model Qualification																													
	Downstream Scale Down Model Qualification																													
	PFMEA to Identify Process Characterization Requirement																													
	Viral Clearance Study from Previous GMP Run																													
	Process Characterization																													
Upstream	Limit of In Vitro Cell Age																													
	Upstream Design of Experiment 1																													
	Upstream Design of Experiment 2																													
	Upstream Design of Experiment 3																													
Downstream	Chromatography Studies DOE																													
	Resin Carryover Studies - Small Scale																													
	Impurity Clearance Study - Small Scale																													
	Column/Resin Lifetime Study - Small Scale																													
	In-Process Hold - Small Scale																													
	Pre-Process Validation																													
	PFMEA Update																													
	Control Strategy																													
	Validation Master Plan																													
	US and DS PPQ Protocol																													
	Raw Material Assessment																													
	Extractable and Leachable Assessment																													
	Update Batch Records																													
	Process Validation																													
Upstream	Media and Feed Mixing Study - At Scale																													
	Microbial Stability of Media and Feed - At Scale																													
Downstream	Fill Homogeneity Study																													
	Resin Carryover Studies - At Scale																													
	Impurity Clearance Study - At Scale																													
	Column/Resin Lifetime Study - At Scale																													
	PPQ Campaign GMP Manufacturing																													
	PPQ 1																													
	PPQ 2																													
	PPQ 3																													
	EOPC																													

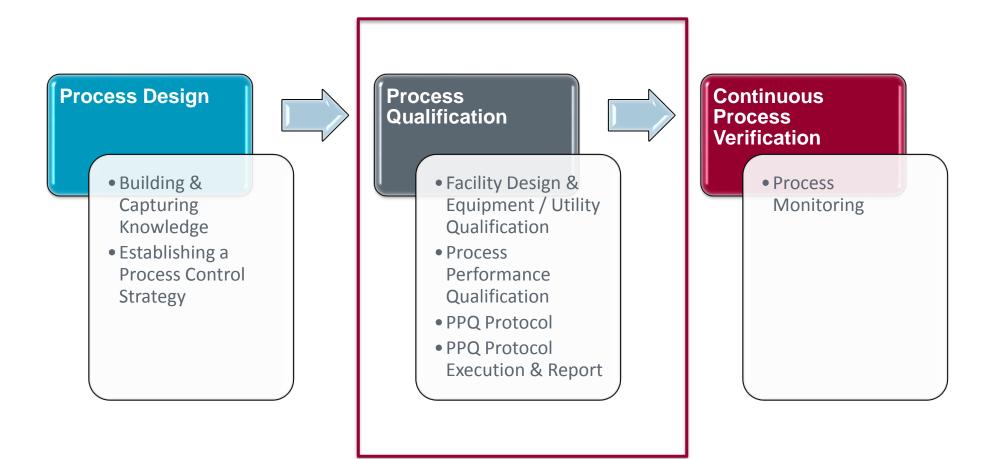
Avid Has Experience Conducting 10 Process Validations



Avid's Process Validation Approach



Avid's Process Validation Approach



Process Design Defining Control Strategies Based on Process Characterization Studies



Avid's Process Validation Approach

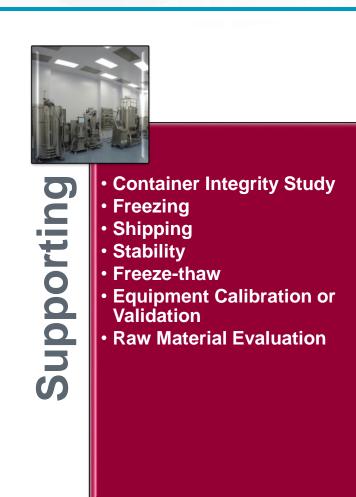
Process Qualification Defining Parameters and Quality Attributes

Process Qualifications Require the Completion of Numerous Studies

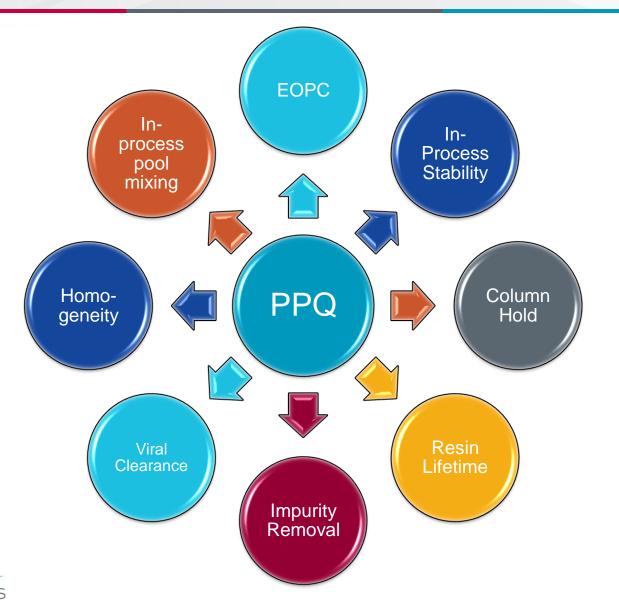
σ

0

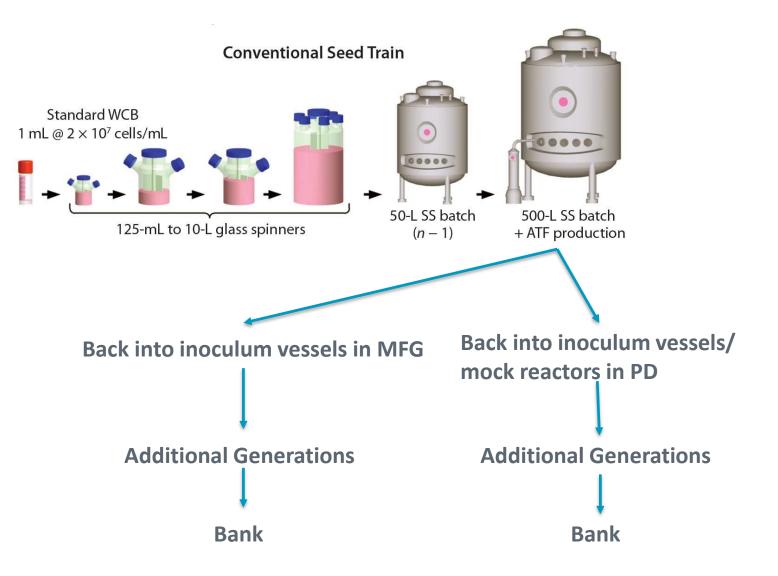
DStl


- Filtration Media Studies Media Hold Time
- Upstream (Media and Feed) Mixing
- EOPC
- Inoculum Expansion Robustness

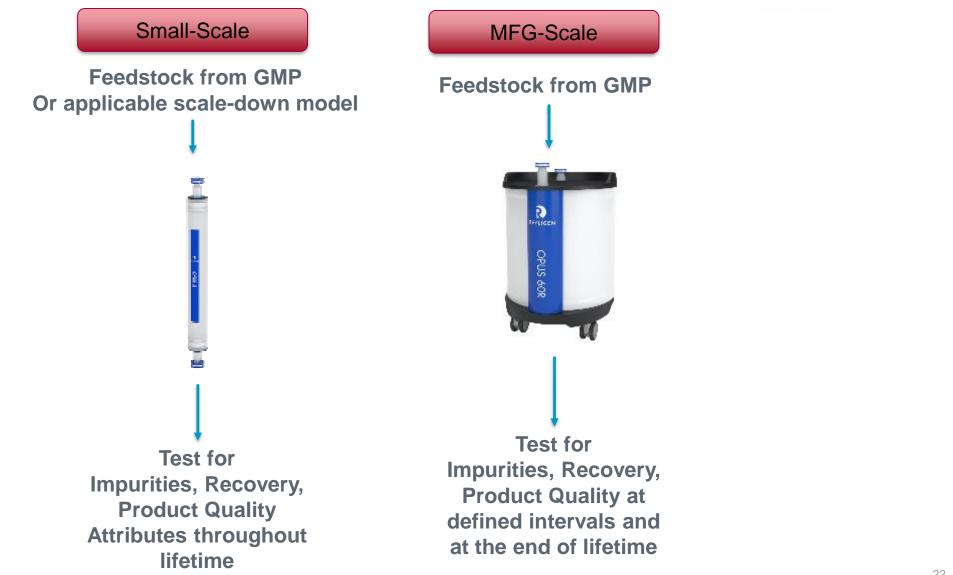
• Downstream Mixing (S2L) • Downstream Mixing (L2L) J Extractable/Leachable 0 Column Carryover In-process Hold Times St


UMO

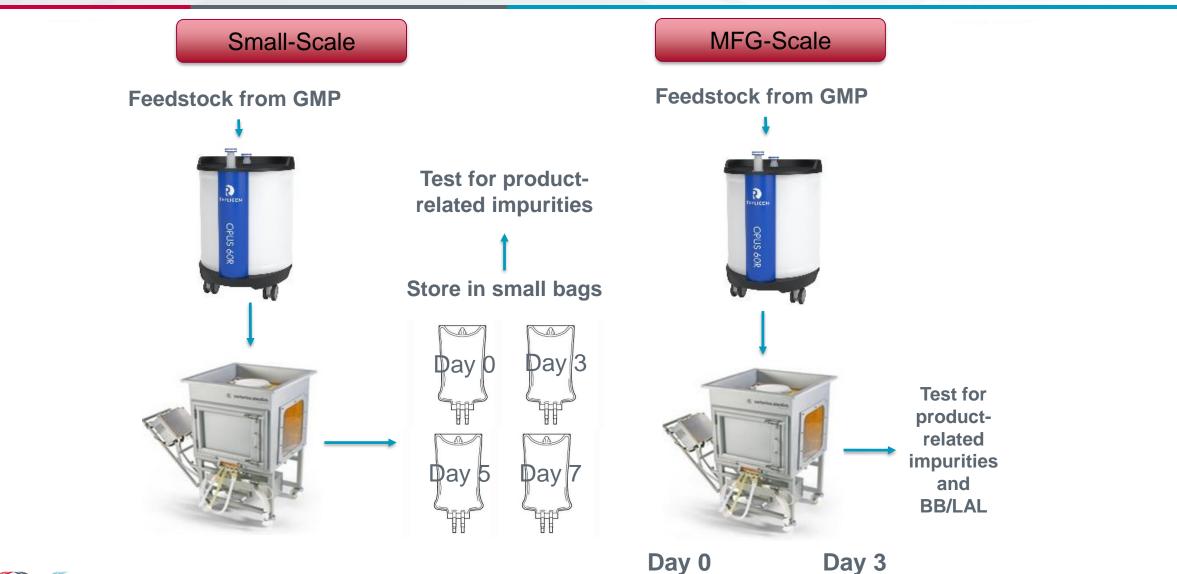
- Column Short Term Hold Column Long Term Hold
- Membrane Sanitization
- Membrane Re-use
- Resin Lifetime
 - Impurity Clearance
- Viral Validation
- Buffer Hold Times
- Homogeneity


Process Qualification Focus on a Few Studies

Challenges


- Samples for supporting studies can account for > 100 additional samples/batch
- Requires coordination amongst different groups to pull, transfer, test, document the samples

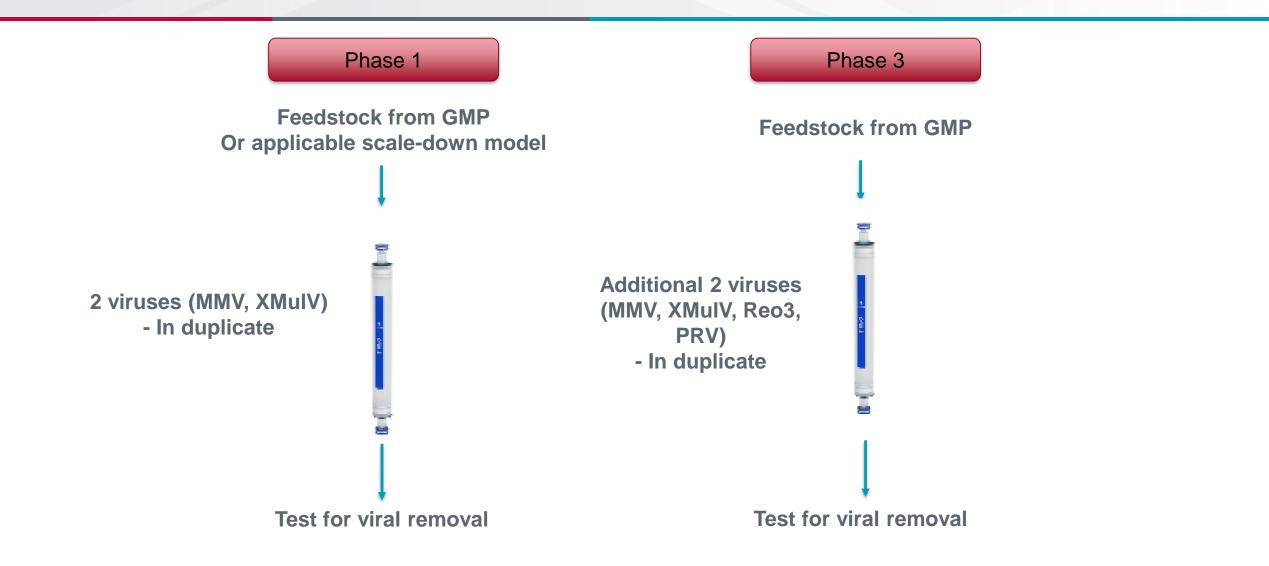
Process Qualification End of Production Cell Bank (EOPC) - To ensure that the genome of the source organism remains unchanged past the normal expected production



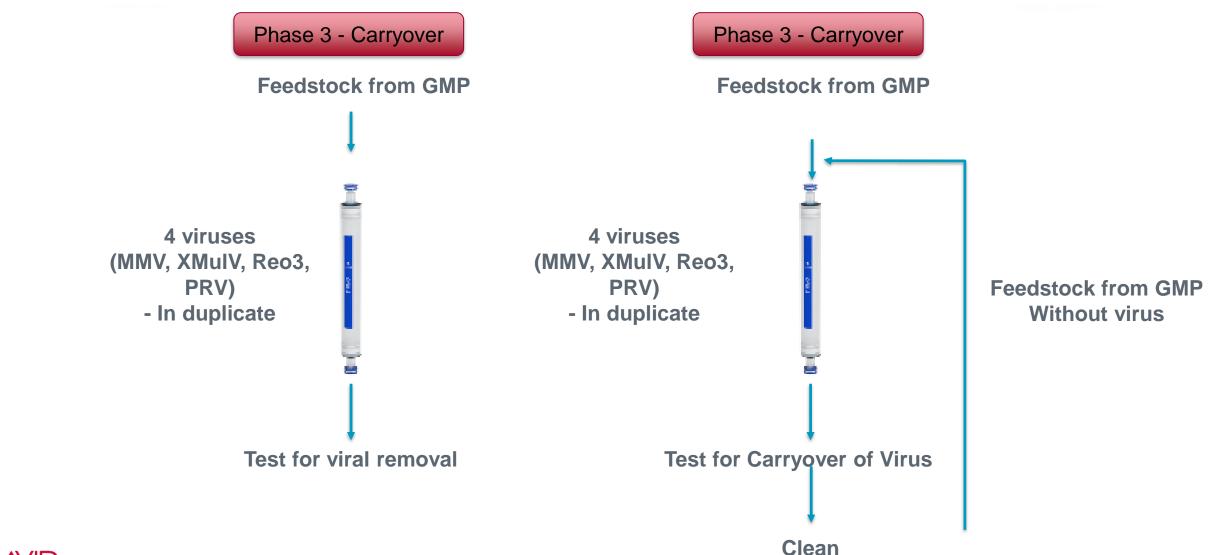
Process Qualification Resin Lifetime/Impurity Clearance - To ensure consistent impurity removal and product quality is achieved across the resin lifetime

Process Qualification In Process Hold - To ensure the biochemical nature of the product does not change over a defined hold time and microbial ingress does not occur during the hold

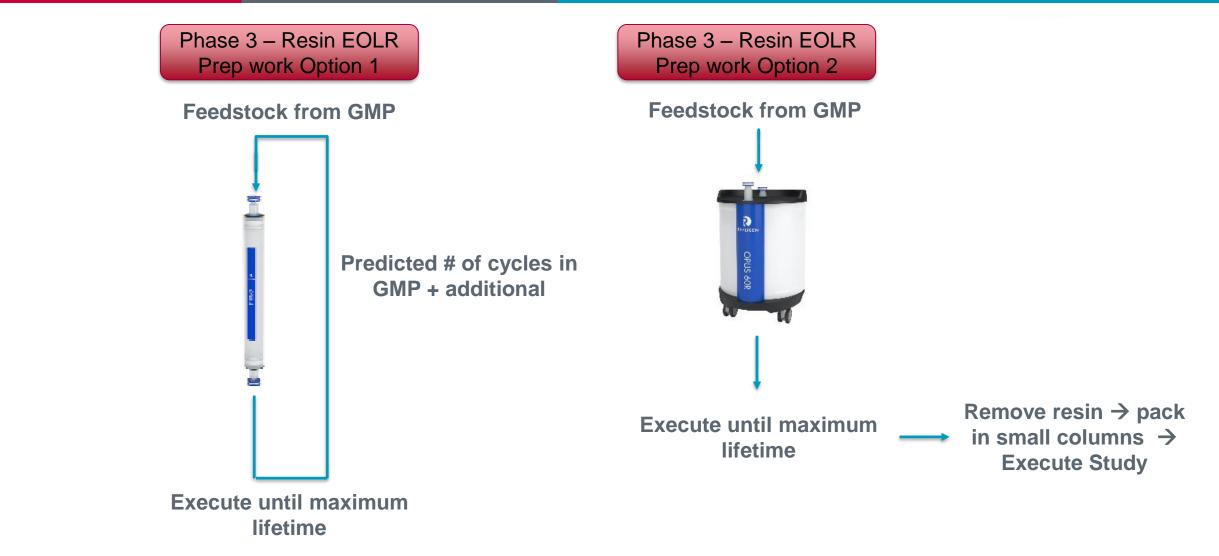
Process Qualification Column Carryover - To ensure that product from previous lots does not carryover (cross-contaminate) the current batch



Process Qualification Column Hold (Clean and Dirty) - To ensure columns are maintained in a state of microbial control



Process Qualification Viral Clearance (P3) - To demonstrate viral clearance against 4 types of viruses



Process Qualification Viral Clearance (P3) - To demonstrate no viral carryover.



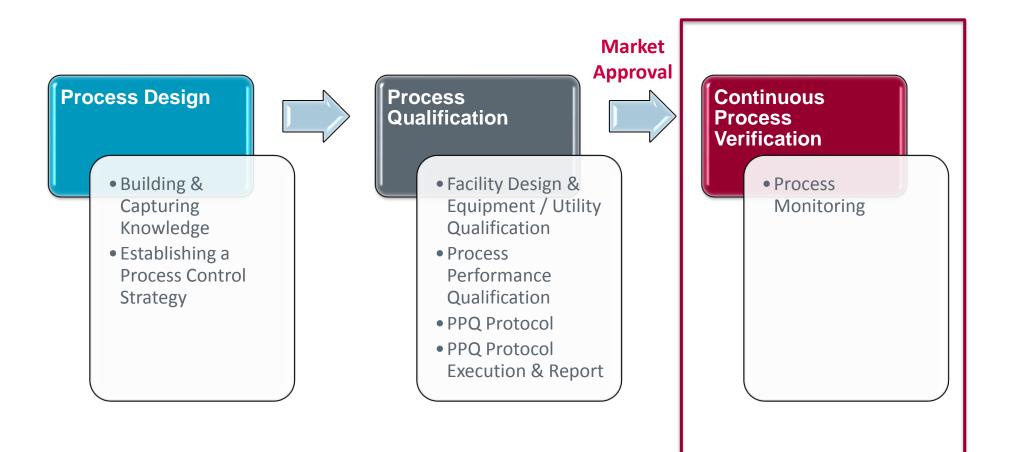
Process Qualification Viral Clearance (P3) - To demonstrate that viral clearance does not change over resin lifetime

Process Qualification In-process liquid mixing - To confirm the in-process material is homogenous

Use water as surrogate solution Spike with 5M NaCl Measure conductivity

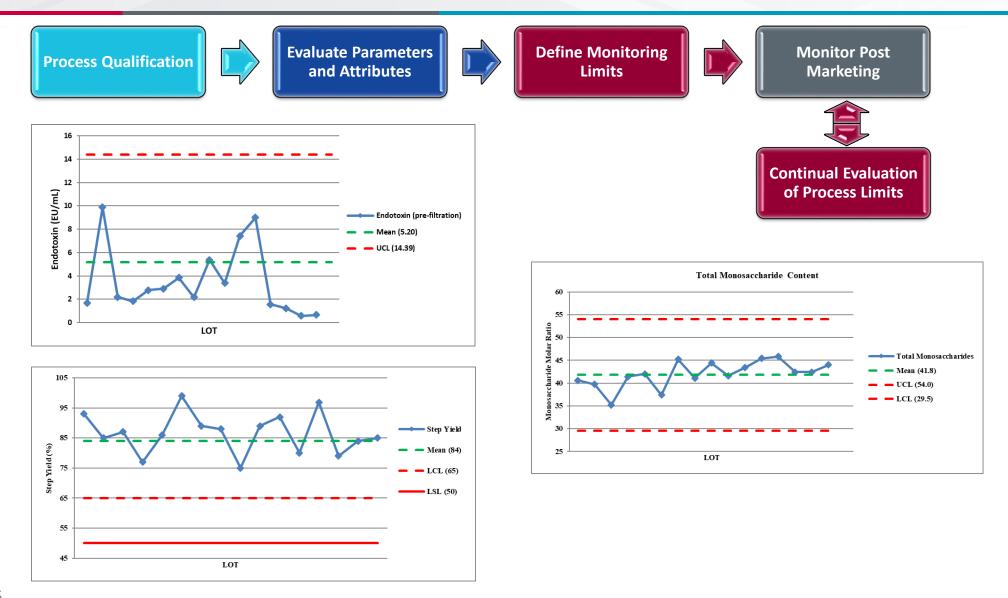
Process Qualification Fill Homogeneity - To confirm the BDS fill process is homogenous

Fill into multiple containers (bottles, bags, etc)


Remove samples from beginning, middle, end

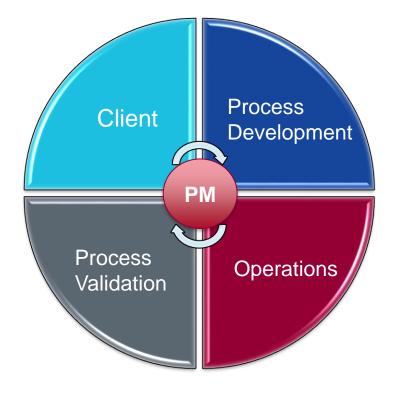
Test for protein concentration or other indicator

	Batch	#1	Batc	h #2	Batch #3				
Sample Point	Protein Conc	Osmo	Protein Conc	Osmo	Protein Conc	Osmo			
Before the Fill	10.47	258	10.31	255	10.27	255			
Beginning	10.51	257	10.26	258	10.25	255			
Middle	10.54	258	10.24	257	10.24	255			
End	10.56	258	10.25	257	10.21	255			
SD	0.04	0.50	0.03	1.26	0.02	0			
Avg	10.52	257.67	10.27	257.33	10.24	255			
% CV	0.4%	0.2%	0.3%	0.5%	0.2%	0.0%			



Avid's Process Validation Approach

Continuous Process Verification Ensures commercial process is in a state of control



Key Factors for Successful Process Validation

Conducted 10 PPQ Batches Through Close Partnership with Internal and External Clients

- ✓ Proper Planning and Good Training of the Operations staff are the key of success
- ✓ Avid has a dedicated Process Validation team to oversee the technical and quality aspects of the campaign
- ✓ Avid has a dedicated Project Manager to ensure every step is completed per agreed plan and timeline

Please come visit us at Booth #1159

David Briggs, Ph.D. | Sr. Manager, Manufacturing Quality Sciences dbriggs@avidbio.com | dave-briggs

William Leonardi, Ph.D. | Project Manager wleonardi@avidbio.com | wleonardi

Interphex 2019 Wednesday, April 3, 2019

ERVIC

ES